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Abstract

This paper studies people’s avoidance behavior to wildfire smoke using data from

smart thermostat motion sensors. We examine two margins of avoidance behaviors by

users, spending more time at home and traveling away from home, and find that ex-

posure to particulate matter pollution from wildfire smoke significantly increases both.

Moreover, we find substantial heterogeneity in responses by users who live in locali-

ties with different demographics and have different home values. In particular, those

with more favorable socio-economic conditions consistently have a greater propensity

to travel away from home at smoke exposure, indicating uneven capacity to undertake

costly avoidance actions.

1 Introduction

Wildfires in the U.S. have been increasing in frequency and intensity in recent years

(Iglesias et al., 2022). When wildland fires burn, they emit an assortment of particles and

gases—including carbon dioxide, carbon monoxide, methane, volatile organic compounds,

nitrous oxide, nitrogen oxides, and particulate matter. Several of these pollutants are known

to have harmful effects to human health, especially those of particulate pollution, a primary

component of wildfire smoke emissions. Fine particulate matter known as PM2.5—so called
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because it consists of particles smaller than 2.5 microns in diameter—is small enough to en-

ter the bloodstream through the lungs and cause a variety of harmful effects throughout the

body. Exposure to PM2.5 has been linked to increased cardiopulmonary mortality and mor-

bidity, increased incidence of diabetes and dementia, and adverse birth outcomes.1. While

wildfire smoke pollution differs in temporal and toxicity characteristics from other sources2,

there are increasing direct evidence on similar health consequences, including increases in

all-cause mortality, respiratory hospitalizations and emergency department visits, cardiovas-

cular hospitalizations, and workplace injury claims (Wen et al., 2023; Heft-Neal et al., 2023;

Gould et al., 2024; Cabral and Dillender, 2024).

These empirical studies generally identify health damages net of any behavioral changes

by the public to minimize harm. Such avoidance behavior has been documented in other

contexts of environmental risks including air and water pollution (Zivin and Neidell, 2009;

Moretti and Neidell, 2011; Zivin et al., 2011). Efforts to avoid wildfire smoke are likely

to be significant and widespread due to both the salience and broad geographic extent of

the exposure. As avoidance behavior is itself costly, failing to take into account avoidance

behavior may result in underestimation of the overall costs of environmental pollution.

One important way that individuals attempt to protect themselves from degraded air

quality during periods of wildfire smoke is by increasing the time they spend indoors (often at

home). However, staying indoors is only a partial defense against exposure to wildfire smoke,

and the degree to which it is successful at reducing exposure depends on characteristics of the

home (O’Dell et al., 2022; Krebs and Neidell, 2024). Therefore, in periods of extreme wildfire

smoke, some households may choose an especially costly form of avoidance: temporarily

leaving the affected area altogether.

In this study, we examine (1) whether households in California increase their time spent

at home and (2) whether they are more likely to temporarily vacate their residences during

periods of high pollution from wildfire smoke. Our analysis employs a unique high-frequency

dataset of smart thermostat readings, which uses motion sensor(s) to detect the presence

of the user(s) at home in 5-minute intervals. These data thus allow us to track individual

users’ time use behavior across normal times and smoke days and offer rich insights into

their decision-making along the two margins of avoidance behavior. The sample spans 2017-

19, which includes two of the most destructive wildfire seasons in Californian history with

massive losses and widespread smoke exposure. We link the thermostat data to pollution

exposure as measured by air pollution monitor readings and smoke plume extents. For the

analysis, we estimate a fixed effects model of the effect of PM2.5 on user behaviors using

1See reviews from Feng et al. (2016); Thangavel et al. (2022); Shi et al. (2023)
2See Wegesser et al. (2009); Naeher et al. (2007); Aguilera et al. (2021).
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both an ordinary least squares (OLS) approach and an instrumental variable (IV) framework

designed to isolate pollution variation driven by wildfire smoke. Our model accounts for each

user’s distinct time-use pattern across day-of-week, the seasonality and trends in wildfire

smoke, and growth of the user base over time.

We find that individuals engage in both types of avoidance behaviors: (1) increasing time

spent indoors and (2) temporarily vacating their residences to avoid high pollution. We find

that high PM2.5 levels (i.e. ≥ 35 µg/m3) lead to a 14.3 percent increase in time spent at

home during daytime on weekdays, relative to the mean time spent at home. The response

is much weaker during evening hours, likely because there is less room for adjustment to

begin with. We also find that one additional day of high PM2.5 in the previous seven days

increases the probability of vacating residence by 14-29% of the mean probability of vacating

residence. Notably, the IV estimates tend to be several times larger than the OLS estimates,

suggesting that avoidance of pollution from wildfire smoke is stronger than that of pollution

from all sources. Finally, we find that individuals avoid more hours of exposure by increasing

time spent indoors compared to temporarily vacating their residences.

We also find substantial heterogeneity in these behaviors based on aggregate demograph-

ics and individual home values. The response in time spent at home is stronger among users

living in lower-income and less educated Census places, while the reverse is true for traveling

away from home. Given that the latter is a much costlier but more effective margin of ad-

justment, these findings are indicative of unequal capacity of different demographic groups

to undertake avoidance behavior. In addition, we find stronger responses along both mar-

gins among users living in higher-value homes relative to the median in their county. Such

disparities in avoidance behavior could lead to uneven exposure to wildfire smoke, making

marginalized populations more vulnerable.

These findings add to the literature on costly avoidance behaviors regarding environmen-

tal risks. For example, Zivin and Neidell (2009) show that air quality alerts result in changes

in decreased outdoor activity; Moretti and Neidell (2011) find evidence that avoidance of

poor air quality results in decreased health impacts. Zivin et al. (2011) find that bottle

water sales increase in places with Safe Water Drinking Act violations. More specifically,

past studies find responses to wildfire smoke include increased defensive expenditures (e.g.

home air purifiers, Richardson et al., 2012), labor force exits and changes in hours worked

(Borgschulte et al., 2022), and declines in otherwise welfare-enhancing activities, such as

recreation (e.g Gellman et al., 2023). Existing estimates indicate that costs of such behavior

may be large. Borgschulte et al. (2022) estimate the annual costs of labor supply reductions

due to smoke at approximately $94 billion in 2018 dollars. For those planning to visit a fed-

eral campground, Gellman et al. (2023) value welfare losses of wildfire smoke in the week of
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their visit at over $100 per trip. Our findings on both margins of adjustment are consistent

with these studies. Traveling away from home incurs significant monetary and welfare costs.

While adjustments in home presence during workdays are less costly, these insidious changes

can have important labor market implications if accumulated over time.

A small set of recent studies have empirically examined home presence and travel be-

haviors for avoiding wildfire smoke. Most of these studies use cell phone mobility data (e.g.

Safegraph) to track how exposure to smoke affects time spent at home and out-of-county

travel. For example, Burke et al. (2022) study how the percentage of users staying at home

the entire day changes due to smoke exposure; when PM2.5 is above 50 µg/m3, the number

of individuals in the data spending their day at home increases by about 10% on average.

Holloway and Rubin (2022) use Safegraph data to study out-of-county travel in response to

smoke. They find that the share of sites visited outside users’ home county increases by 0.28

percentage points on average during weeks when their home county was exposed to smoke,

an increase of about 1.3 percent above baseline. Both Burke et al. (2022) and Holloway and

Rubin (2022) find that avoidance adaptation is increasing in Census block group household

income.

While cell phone tracking data has many useful characteristics, datasets made available

to researchers are generally aggregate data, which come with some downsides. Safegraph

provides data on the share of users observed to have stayed entirely at home on a given

day at the Census block group level. It is not possible to observe from these data changes

in time spent at home, or the times of day at which time spent at home is more likely to

increase. Moreover, these data do not allow inclusion of user fixed effects. If users with

particular patterns of home occupancy are more likely to live in areas affected by wildfire

smoke, estimates based on aggregate data could be biased. For example, rural areas, which

may be more likely to be affected by wildfire smoke, are also older on average,3 and older

residents may have different capacities and/or needs to modify their behavior in response to

smoke. Safegraph also provides data on the number of visits to selected places of interest

(POIs), and the counties that visitors are from. Holloway and Rubin (2022) use these data

to measure changes in out-of-county travel in response to smoke, but because the data are

not at the individual level, it is not possible to discern whether users overall number of visits

to POIs changes when they travel out-of-county.

More broadly, our findings also connect to an emerging literature on the economic impacts

of wildfire smoke, such as credit card and mortgage defaults, as well as property and rent

values (An et al., 2023; Addoum et al., 2199; Lopez and Tzur-Ilan, 2023).

3https://www.census.gov/newsroom/blogs/random-samplings/2016/12/a_glance_at_the_age.

html
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Our findings have important policy implications for mitigating impacts of wildfire smoke.

First, the observed heterogeneity in avoidance behaviors underscores the need for targeted

outreach to demographic groups that are less likely to engage in protective actions, such

as renters or individuals with less flexibility in their daily schedules. Second, our results

highlight the value of high-frequency, individual-level data in designing and evaluating in-

terventions aimed at reducing pollution exposure. Incorporating these insights into urban

planning and disaster response can help communities better adapt to the growing risks as-

sociated with wildfire smoke.

2 Data

2.1 Smart-Thermostat

We measure time spent at home using smart-thermostat data from Ecobee, a major smart

thermostat company. Ecobee collects anonymized data from users who voluntarily partici-

pate in its Donate Your Data program to share with researchers.4 This dataset contains high

frequency data (at five minute intervals) for every participating household in its database,

providing measures of temperature, thermostat setting, and whether someone is at home as

detected by one or more motion detection sensor(s).

For our analysis, we restrict the sample to 6,153 households in California. To obtain

more precise location of the household, we match each household’s city in the database to

census place using a fuzzy match based on the recorded city name. Figure A3 shows the

geographic distribution of users by county, with the color indicating the number of users

on the left panel and the density of users on the right. There are users in most parts of

California, except for Northern California and the central Sierra region. More users reside

in populous areas such as the Bay Area and Southern California - their distribution is

largely reflective of the underlying population. Nevertheless, it is important to note that

smart thermostat users likely differ from general population significantly in socioeconomic

conditions. Unfortunately, as the data do not contain demographic variables, we cannot

quantitatively assess these differences.

Each Ecobee household in our final sample has at least one motion detection sensor that is

attached to the main thermostat and some households also install additional remote sensors.

The data contains five-minute readings from these sensors. For tractability, we collapse

the data to the half-hourly level. The motion sensors can take either TRUE or FALSE

values, conditional on the value being non-missing. If any one motion sensor recorded a

4See https://www.ecobee.com/en-us/donate-your-data/ for more details on the program.
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“TRUE” value in a half-hour block, a user was classified as being at home (indoors) in that

block. Figure A1 shows the daily pattern of minutes at home by weekday/weekend in the

left panel, and by season in the right. In general, the detected activity level is the lowest

between midnight and early morning, ramps up significantly between 5 to 7am, then displays

a U-shape during 7am-6pm, and finally falls again after 8pm. People spend substantially

more time at home during daylight hours over weekends than weekdays, and slightly less time

during the evening hours. The differences across seasons are less remarkable, with people

spending slightly more time at home during winter and spring. Overall, these patterns are

consistent with the typical work and recreation schedule of a household, suggesting that the

data is reflective of users’ time use behavior.

Based on the half hourly data, we then construct two main outcome variables. Our first

outcome variable is time spent at home during work (8 a.m. - 5 p.m.) and non-work (5

p.m. - 8 p.m.) segments. We divide the total number of half-hours a user is home by the

total number of half-hours observed to get the proportion of time a household is home i.e.

indoors. Multiplying the calculated proportion by hundred gives our measure of “percentage

time spent at home”. Our second outcome variable measures whether users choose to vacate

their residences temporarily or not on any given day. For a user to be away from home on

any day, the sensors should record “FALSE” for all half-hour blocks in that day. If a user is

away for at least 2 days in a row, we classify the first day of such a sequence as the first day

of temporary residence vacancy. Table A1 provides summary statistics on these measures.

The Ecobee dataset consists of 6153 households in California. 105 households are in cities

for which we do not have data on PM2.5, hence, they are dropped from our sample. Of the

remaining, 6043 households, 1255 households have more than 5 percent of entirely missing

days. These households are likely those with the older Ecobee models that do not come with

sensors. After removing them, we are left with 4793 households. Of these, 2010 households

have discontinuous daily data. On dropping days with less than 10 days in the initial and

end periods for each household that causes discontinuity in data, we are able to retain 74

households, leaving us with a final sample of 2857 households.

2.2 Air Pollution

We extracted PM2.5 daily summary data from EPA’s Air Quality System (AQS) database

for monitors in California and its neighboring states: Arizona, Nevada and Oregon. To

construct a balanced panel of census places, we matched each place polygon in California

(ACS 2013-2017) with monitors5 located within 20 miles using nearest neighbor matching.

5For comparability in PM records, we used monitors with parameter codes 88101 and 88502. 88101
monitors use Federal Reference Methods (FRM) and 88502 are “FRM-like”.
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We determined the PM record for every place-date combination as a weighted PM measure

by calculating weights using inverse distance weighting6.

¯PM2.5jt =

∑
m∈Mj

wiPM2.5mt∑
m∈Mj

wi

Figure A2 shows the distribution of distance between each user’s city centroid and its

matched monitor(s), weighted using the same scheme. For the vast majority of the users,

the weighted distance falls within 5 miles.

2.3 Smoke

We use smoke plume data from NOAA’s Hazard Mapping System (HMS) Fire and Smoke

Analysis product. Starting in 2005, the NOAA HMS program has identified the spatial

extent of smoke plumes in the US on a daily basis. The data is constructed from twice-daily

visible and infrared geostationary satellite observations (NASA Geostationary Operational

Environmental Satellites, GOES) using an automated, manually quality-controlled process

(Rolph et al., 2009). Smoke plumes are also categorized light, medium or heavy density

based on thickness of the smoke. The result of the analysis is a series of polygon shapefiles

identifying locations where smoke has been observed in the air column each day. Two

important limitations of these data are that they cannot distinguish between smoke high in

the air column and smoke impacting surface air quality, and that they may not recognize

smoke plumes concealed by cloudy days (Childs et al., 2022). These limitations would be

problematic for our IV strategy if the presence of clouds, or the location of smoke within the

air column, were correlated with unobserved endogenous factors related to both time spent

at home and air quality. We judge the existence of such a relationship to be unlikely.

We use smoke plume data to construct a daily indicator variable for whether smoke

plumes were present at each census place on each day within our sample period. We use

census place polygons to define place boundaries, and designate the place has having been

affected by smoke on a given day if the place intersected any smoke plumes on that day,

regardless of density.

2.4 Weather

Our weather measures come from PRISM Climate Data (Oregon State University, 2023).

This is a nationwide gridded data with approximately 4km resolution containing daily

6weight = 1
(1+miles)2 . Inverse distance weighting is used for all monitors.
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weather observations. For every census place, we extracted daily mean temperature (in

degrees Celsius) and precipitation (in millimeters) using its centroid.

2.5 Demographics and Predicted Home Values

To examine heterogeneous responses from different demographic groups, we obtain de-

mographic data from the 2013-2017 American Community Survey at the Census place level,

including family income, the share of White population, and the share of college graduates.

We also construct a measure of predicted home values for each user based on their home

square footage, age, and city as reported in the Ecobee data. To generate this measure, we

first create a model of log home prices as a function of log square footage, building age, year

of sales. We estimate this model for each Census place or city using home transactions data

from Zillow’s Transaction and Assessment Database (ZTRAX).7 The city-specific model is

then combined with input from the Ecobee user data to predict their home values.8 It should

be noted that this measure is meant to proxy for the users’ socioeconomic conditions rather

than an accurate estimate of their property values.

3 Empirical Design

We estimate Ecobee users’ response to pollution levels using the following specification

for proportion of time spent at home:

Yijt = β · 1(PMjt ≥ 35) +X′θ + ϕid(t) + ηw(t) + ϵijt (1)

Yijk is the proportion of time spent at home for user i in city j on day t during work (8 a.m.

- 5 p.m.) and non-work (5 p.m. - 8 p.m.) hours. The key regressor 1(PMjt ≥ 35) is an

indicator variable which equals to one when PM2.5 is greater than or equal to 35 µg/m3 in

city j on day k. According to World Health Organization guidelines, PM2.5 concentrations

above 35 µg/m3 are unhealthy for sensitive groups; below 35 µg/m3, PM2.5 concentrations

are considered “moderate.” As well, the EPA National Ambient Air Quality daily standard

7Property assessment and transaction data were provided by Zillow through the Zillow Transaction and
Assessment Dataset (ZTRAX). More information on accessing the data can be found at http://www.zillow.
com/ztrax. The results and opinions are those of the author(s) and do not reflect the position of Zillow
Group. In accordance with the ZTRAX Access Agreement, we have deleted raw ZTRAX data and only
retained the city-specific model coefficients.

8For a small number of users whose home built year is missing, we repeat these steps using a model
without building age. We do not predict a home value if the square footage is missing.
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for PM2.5 is set at 35 µg/m3.9

X is a vector of controls which includes a national holiday dummy and polynomials to

the second degree of temperature and precipitation. ϕid(t) is a user-by-day-of-week fixed

effect to capture the unique time use pattern of each user. ηw(t) is a week-of-sample fixed

effect. To interpret β as a causal estimate in this specification, we assume that the variation

in PM2.5 is plausibly exogenous conditional on the controls. In other words, there is no

unobservable factors that drive both pollution and people’s time use behavior. For example,

this assumption may be violated when people are traveling more during a holiday or less

during the Covid shutdown period. To address these concerns, we control for national holiday

and exclude 2020 and beyond from our sample.

To further isolate variation in PM2.5 caused by wildfire smoke, we use an instrumental

variable (IV) approach. Specifically, we instrument for 1(PMjt ≥ 35) using an indicator

of the presence of smoke plume. Under this framework, the identification of β as a causal

parameter requires two assumptions. First, the instrument is relevant (i.e. wildfire smoke

is a strong predictor of PM2.5). Second, the exclusion restriction is satisfied (i.e. smoke

does not affect users’ time use patterns through channels other than pollution). Instead of

estimating behavioral responses to high-pollution days in general, this approach identifies

responses to pollution generated by wildfire smoke. These responses might be different given

different toxicity of the fine particulates from wildfires, the episodic nature of exposure, and

greater salience (Aguilera et al., 2021; Gould et al., 2024). For these reasons, we consider

the estimates under the IV framework as our preferred results.

To examine whether households travel away from their homes as a pollution avoidance

strategy, we use the following specification:

Yijt = β ·
t−1∑

τ=t−7

1(PMjτ ≥ 35) +X′θ + ϕid(t) + ηw(t) + ϵijt (2)

Here, the outcome is whether user i in city j vacate their home on day t, as defined in

Section 2.1. The sample excludes the following days when they are away. The key regressor∑t−1
τ=t−7 1(PMjτ ≥ 35) is the number of days PM2.5 is greater than or equal to 35 µg/m3

in the previous seven days. This measure is intended for representing variation in PM2.5

over a longer period. As traveling from home is a costlier avoidance strategy, we expect this

decision to be motivated by a prolonged period of air pollution. The other controls are the

9Under the Clean Air Act, an area falls out of compliance with the Clean Air Act if 24-hour air quality
falls below 35 µg/m3 more than 2 percent of days per year over a three-year period. However, days on which
smoke causes air quality to fall below this threshold can generally be excluded from assessments of regulatory
compliance under the Clean Air Act’s Exceptional Events Rule.
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same as before, as does the identification assumption.

Similar to above, we also apply the IV framework to this outcome. This framework is

potentially more important here because people are more likely to travel away from home

to avoid a period of smoke pollution rather than idiosyncratic pollution days. We use two

separate sets of instruments. For our just-identified IV specification, the instrument is the

number of smoke days in the previous seven days. For our over-identified IV specification,

we create seven indicators for having 1, 2, ..., 7 smoke days in the previous seven days.

Throughout the analysis, we cluster the standard error at the census place level to account

for correlations between users in the same city and over time.

4 Results

4.1 Pollution and Time Spent at Home

Table 1 reports the results on percent time spent at home during weekdays. Column

(1) presents the OLS estimates for day time (8 a.m.–5 p.m.), which suggest that a day with

PM2.5 exceeding 35 µg/m3 is associated with a 1.6 percentage point (p.p.) increase in time

spent at home, equivalent to a 2.8 percent increase when compared to the outcome mean.

Column (2) reports the first-stage regression under the instrumental variable framework,

which uses an indicator for a smoke day to instrument for a high PM day. The coefficient

is positive and highly statistically significant, with a F-statistic that is greater than 25,

supporting the relevance and power of the instrument. Column (3) contains the IV estimate

which implies that high PM leads users to spend 8.1 p.p. more time at home, or 14.3 percent

of the mean time spent at home. A number of reasons might account for the IV estimate

being much larger than the OLS estimate. For one, the instrument might have corrected

the attenuation bias due to measurement errors in the high-PM day indicator by isolating

relevant variation. It is also possible that the instrument picks up polluting days that are

due to a nearby wildfire rather than other reasons. People might have a stronger behavioral

response on these days because the pollution might be more salient. In columns (4)-(6), we

use the same specifications to examine evening time spent at home (5 p.m.–8 p.m.). Here,

the OLS estimate is also positive and statistically significant but only half the magnitude

of the previous estimate on day time. The IV estimate is opposite in sign and statistically

insignificant. In general, the response in evening hours is much weaker, possibly because

people already spend most of weekday evening hours at home and there is less room for

adjustment.

For the same reason as above, we would expect users who routinely spend more time at
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Table 1: Pollution and Proportion of Time Spent at Home During Weekdays

Dependent variable:

Day Time (8 a.m. - 5 p.m.) Evening Time (5 p.m. - 8 p.m.)

OLS IV 1st Stage IV 2nd Stage OLS IV 1st Stage IV 2nd Stage

(1) (2) (3) (4) (5) (6)

PM ≥ 35 1.595∗∗∗ 8.107∗∗∗ 0.753∗∗ −0.865
(0.282) (2.578) (0.298) (2.276)

Smoke Day 0.060∗∗∗ 0.060∗∗∗

(0.005) (0.005)
Precipitation 0.091 −0.001∗∗∗ 0.099∗∗∗ 0.040∗∗∗ −0.001∗∗∗ 0.038∗∗∗

(0.009) (0.0001) (0.010) (0.011) (0.0001) (0.011)
(Precipitation)2 −0.001∗∗∗ 0.00002∗∗∗ −0.001∗∗∗ −0.0001 0.00002∗∗∗ −0.00005

(0.0002) (0.00000) (0.0002) (0.0002) (0.00000) (0.0002)
Temperature 0.071 −0.007∗∗∗ 0.116 0.091 −0.007∗∗∗ 0.079

(0.076) (0.001) (0.079) (0.058) (0.001) (0.063)
(Temperature)2 −0.002 0.0001∗∗∗ −0.002 −0.002 0.0001∗∗∗ −0.002

(0.002) (0.00002) (0.002) (0.002) (0.00002) (0.002)
Holiday 6.701∗∗∗ −0.002 6.717∗∗∗ −4.526∗∗∗ −0.001 −4.528∗∗∗

(0.234) (0.004) (0.230) (0.191) (0.004) (0.193)

Mean 56.5 0.01 56.5 71.43 0.01 71.43
User by day-of-week FE Yes Yes Yes Yes Yes Yes
Week-of-sample FE Yes Yes Yes Yes Yes Yes
Observations 1,346,392 1,346,392 1,346,392 1,335,638 1,335,638 1,335,638
R2 0.432 0.220 0.432 0.325 0.219 0.325
F-stat - 26.1 - - 25.75 -

Notes: this table contains results from estimation of Equation (1) for time spent at home on weekdays. Vacation
days (as defined by the authors previously), including one day prior to vacating residence, have been excluded.
The dependent variable is the percentage of time a user was home each day during the defined time windows.
Number of half hour blocks the user was home divided by the observed number of half hour blocks times 100
gives the percentage of time a user was home. Standard errors are clustered at the census place level. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01
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Table 2: Time Spent at Home by Quintiles of Baseline Time Use

Q1 Q2 Q3 Q4 Q5

A. Day time (8 a.m. - 5 p.m.)̂PM ≥ 35 14.055∗∗ 9.919∗ 6.935 8.059∗∗ 3.454
(5.412) (5.558) (5.539) (3.809) (3.696)

F-stat 19.85 23.07 26.78 29.35 26.73
Mean 25.7 42.87 56.52 68.79 81.82
Observations 232,961 266,590 273,671 284,899 288,271
R2 0.184 0.116 0.087 0.078 0.123
Controls Yes Yes Yes Yes Yes

B. Evening time (5 p.m. - 8 p.m.)̂PM ≥ 35 7.894 6.173 −5.298 −4.204 −5.802∗∗

(7.056) (5.341) (5.183) (3.828) (2.818)

F-stat 19 23.52 25.02 26.84 29.58
Mean 41.72 62.73 73.71 81.72 90.42
Observations 227,269 261,856 271,691 287,067 287,755
R2 0.151 0.066 0.060 0.060 0.072
Controls Yes Yes Yes Yes Yes

Notes: this table contains results from estimation of Equation (1) for time spent
at home on weekdays by users divided into quintiles based on their mean time
spent at home. Vacation days (as defined by the authors previously), including
one day prior to vacating residence, have been excluded. The dependent variable
is the percentage of time a user was home each day during the defined time
windows. Number of half hour blocks the user was home divided by the observed
number of half hour blocks times 100 gives the percentage of time a user was
home. Standard errors are clustered at the census place level. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.

home to adjust less in response to pollution. In Table 2, we explore whether this is true

by estimating the changes in time spent at home separately for users in different quintiles

of baseline time spent at home. The overall pattern is as expected: users in the lowest two

quintiles increase their time spent at home the most during both day and evening time.

While the estimates for evening hours are not statistically significant, their magnitudes are

substantial, showing a 7.9 p.p. increase for the 20% users who usually spent the least time

at home and a 6.2 p.p. increase for the next 20%.

In Figure A6, we find that the increase of the share of time spent at home during day

time is even across time of day. In Figure A7, we examine the dynamic effect of pollution for

up to seven days using a distributed lag model. A high-pollution day significantly increases

time spent at home for up to 3 days after, with the effect decreasing over time. Days 5 and

6 after see a significant decrease in time spent at home, potentially due to a compensating

effect.
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Overall, we find evidence that people increase their time spent at home during the day

on weekdays when air pollution reach high levels, which is consistent with a motivation to

avoid exposure.

4.2 Pollution and Traveling Away from Home

Next, we examine another avoidance behavioral margin: whether people leave their homes

and travel elsewhere. Table 3 reports the main estimates on the effect of pollution in the

previous 7 days on whether the household vacate their residence. Similar to before, we

estimate Equation (2) using both OLS and IV specifications. In particular, we use two sets

of instruments under the IV framework. The first is a single instrument of the number of

smoke days in the last 7 days and the second consists of a set of seven indicators of having 1,

2, ..., 7 smoke days within the last 7 days, respectively. Thus, we will have two IV estimates,

one just-identified and the other over-identified.

We find positive and statistically significant estimates across the OLS and IV specifi-

cations. The OLS estimate in Column (1) suggests that an additional high-pollution (i.e.

PM2.5 exceeding 35µg/m3) day among the previous 7 days increases the probability of va-

cating residence by 3 basis points (b.p.). Columns (2) and (3) show that the first-stage

regression for both sets of instruments is strong. In Columns (4) and (5), we find that the

corresponding IV estimates are at 17 and 8 b.p., respectively. To put these magnitudes

in context, these effects are equivalent to 29 and 14% of the mean probability of vacating

residence, respectively.

Our results provide substantial evidence in support of short-term avoidance behavior in

response to wildfire induced pollution by individuals. They align with the existing work

on wildfire avoidance behavior that also suggest that people spend more time at home on

days with high PM2.5. We are able to provide more detailed estimates based on the time

of day when individuals engage in said avoidance. We find that most of the effect is driven

by altering time at home during day time hours as opposed to evening hours. Furthermore,

these avoidance behaviors are more evident during weekdays as opposed to weekends.

4.3 Heterogeneity

Households with different characteristics might have different behavioral responses to

wildfire smoke due to differences in their ability to adjust time use and financial resources

for travel (Holloway and Rubin, 2022; Burke et al., 2022). In this section, we explore these

potential heterogeneous responses by splitting the sample of users along several key socio-

economic dimensions and separately estimating the effect of wildfire-induced pollution on

13



Table 3: Pollution and Traveling Away from Home

Dependent variable: Vacated Residence

OLS IV 1st stage IV 2nd stage

(1) (2) (3) (4) (5)∑t−1
τ=t−7 1(PMjτ ≥ 35) 0.027∗ 0.169∗∗∗ 0.081∗∗

(0.015) (0.048) (0.033)∑t−1
τ=t−7 1(Smoke Day) 0.158∗∗∗

(0.009)
1(Smoke = 1 day) −0.015∗∗∗

(0.005)
1(Smoke = 2 days) −0.072∗∗∗

(0.009)
1(Smoke = 3 days) 0.083∗∗∗

(0.028)
1(Smoke = 4 days) 0.243∗∗∗

(0.059)
1(Smoke = 5 days) 0.604∗∗∗

(0.038)
1(Smoke = 6 days) 1.354∗∗∗

(0.069)
1(Smoke = 7 days) 1.635∗∗∗

(0.072)
Temperature 0.032∗∗∗ −0.045∗∗∗ −0.043∗∗∗ 0.037∗∗∗ 0.034∗∗∗

(0.010) (0.004) (0.004) (0.010) (0.010)
(Temperature)2 −0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.0002) (0.0001) (0.0001) (0.0002) (0.0003)
Precipitation 0.004∗ 0.002∗∗∗ 0.002∗∗∗ 0.004∗ 0.004∗

(0.002) (0.0004) (0.0004) (0.002) (0.002)
(Precipitation)2 −0.0001∗∗ −0.00003∗∗∗ −0.00002∗ −0.0001∗∗ −0.0001∗∗

(0.00004) (0.00001) (0.00001) (0.00004) (0.00004)
Holiday 0.389∗∗∗ −0.098∗∗∗ −0.096∗∗∗ 0.405∗∗∗ 0.396∗∗∗

(0.046) (0.008) (0.008) (0.047) (0.046)

Mean 0.56 0.1 0.1 0.57 0.57
Week-of-sample FE Yes Yes Yes Yes Yes
User by Day of week FE Yes Yes Yes Yes Yes
Observations 1,905,765 1,885,720 1,885,720 1,885,720 1,885,720
R2 0.041 0.410 0.457 0.041 0.041
F-stat - 64.46 77.86 - -

Notes: this table represents results from estimation of Equation (2). The dependent variable
is an indicator for first day of leaving home. It takes a value 1 on the first day of the user
vacating residence and 0 on all non-vacation days. The instrument for the number of days in
the last 7 days when PM ≥ 35 µg/m³ in column (2) is the total number of smoke days in the
last 7 days. In column (3), the instrument variables are a sum of indicators, each turning on
if the number of smoke days in the last 7 days is equal to the indicator number. Standard
errors are clustered at the census place level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4: Heterogeneous Responses Based on Census Place Demographics

Family Income White Population Bachelors or More
(Median = 87967) (Median = 0.62) (Median = 0.36)

≤ Median > Median ≤ Median > Median ≤ Median > Median

A. Percentage time at home between 8 a.m. - 5 p.m.̂PM ≥ 35 14.578∗∗ 3.792∗ 8.219∗∗∗ 9.032∗∗ 11.995∗∗ 4.506∗∗

(6.051) (2.211) (3.016) (3.622) (5.920) (2.155)

Stage 1 F-stat 18.94 44.99 32.46 20.97 19.56 42.31
Mean 55.18 57.72 55.53 57.48 55.95 57.02
Observations 647,536 698,856 678,432 667,960 660,373 686,019
R2 0.441 0.420 0.413 0.450 0.435 0.428
Controls Yes Yes Yes Yes Yes Yes

B. Vacated residencê∑t−1
τ=t−7 1(PMjτ ≥ 35) 0.137 0.185∗∗∗ 0.121∗ 0.247∗∗∗ 0.143 0.213∗∗∗

(0.091) (0.056) (0.063) (0.085) (0.090) (0.052)

Stage 1 F-stat 41.42 121.05 89.57 46.59 43.25 113.37
Mean 0.54 0.59 0.56 0.57 0.49 0.64
Observations 906,460 979,260 947,664 938,056 931,182 954,538
R2 0.047 0.036 0.034 0.048 0.044 0.039
Controls Yes Yes Yes Yes Yes Yes

Notes: This table contains IV estimates from subsamples of users residing in places with below and above
median family income, proportion of white population and proportion of individuals with bachelors or a
higher degree. The dependent variable is time spent at home on weekdays in Panel A and leaving home in
Panel B. Vacation days (as defined by the authors previously), including one day prior to vacating residence,
have been excluded. Standard errors are clustered at the census place level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

the two main outcomes under the IV framework.

In Table 4, we examine three demographic variables of the users’ Census place. Column

(1) presents estimates from users living in Census place where family income is below median,

while column (2) shows those above median.10 We find a much larger increase in percent

of time at home during weekday day time for users from lower-income communities when

compared to their counterparts from higher-income ones, but a reverse pattern for vacating

residence. We observe very similar pattern in columns (5)-(6) where users in more educated

communities respond less in hours at home but more in traveling away from home. When we

split the sample by the share of White population in columns (3)-(4), we find that users in

both sets of communities are similarly responsive in their time spent at home, but a higher

share of users in Whiter communities travel away from home. These patterns are indicative

of different avoidance strategies and behavioral adjustments taken by different demographic

groups. In particular, we consistently find that users from more marginalized communities

10The median refers to the sample median, not the median income of California.
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Table 5: Heterogeneous Responses Based on Predicted Home Value

Home Value

≤ County Median > County Median

A. Percentage time at home between 8 a.m. - 5 p.m.̂PM ≥ 35 5.814∗ 10.835∗∗∗

(3.088) (3.371)

Stage 1 F-stat 26.28 27.94
Mean 54.05 58.93
Observations 629,565 646,418
R2 0.432 0.418
Controls Yes Yes

B. Vacated residencê∑t−1
τ=t−7 1(PMjτ ≥ 35) 0.068 0.251∗∗∗

(0.060) (0.074)

Stage 1 F-stat 63.47 70.5
Mean 0.53 0.61
Observations 879,487 908,068
R2 0.036 0.044
Controls Yes Yes

Notes: This table contains IV estimates from subsamples of users with pre-
dicted home values below and above their county median. The dependent vari-
able is time spent at home on weekdays in Panel A and leaving home in Panel
B. Home values are predicted using square footage. Vacation days (as defined
by the authors previously), including one day prior to vacating residence, have
been excluded. Standard errors are clustered at the census place level. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.

(i.e. lower-income, less White and educated) are significantly less likely to travel away from

home, which might require significant financial means and flexibility.

An important limitation of these results, however, is that the aggregate demographics of

the Census places might not be representative for Ecobee users. To address this problem, we

next examine a user-specific characteristic – predicted home value. While we do not directly

observe users’ demographics, the Ecobee data record the square footage and age of the users’

homes, which we use to predict their property values as described in Section 2.5.

In Table 5, we split the sample of users based on whether their predicted home value

is below or above the median in their county and re-estimated the effects under the IV

framework. For both time use outcomes, we find a significantly stronger response among

users with higher property values. On high pollution days, they increase the percent of time

spent at home by 10.8 p.p. as opposed to 5.8 p.p. for those living in lower-valued homes.

Their probability of traveling away from home increases by 25 b.p. for an additional high-
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PM day in the past seven days, compared to a much smaller and statistically insignificant

increase for their peers.

In conclusion, the average estimated effects in the previous sections mask important

heterogeneity in the responses. Our findings consistently show that households living in

higher-income, more White and educated communities as well as those with higher-value

homes have a stronger avoidance response to high particulate matter pollution due to wildfire

smoke by traveling away from home. In terms of time spent at home, we find a mixed pattern,

with users in marginalized communities adjust more while those lower-valued homes adjust

less.

4.4 Robustness

We conduct several robustness checks of our main results.

First, we test the robustness of our result against the confounding effect of evacuation

from an active fire nearby. If an active wildfire nearby leads to evacuation notices which in

turn changes the time spent at home and decisions to vacate residence, our estimate would

reflect not only avoidance of smoke but also direct wildfire impacts, as the two are correlated.

To alleviate this concern, we conduct a simple robustness check by dropping user-days with

active wildfires within 5 miles from our sample. Tables A2 and A3 report these results, which

remain very similar to our main ones regarding the general direction and magnitude.

Our main results are also robust to controlling for year-month fixed effects instead of

week-of-sample ones, as shown in Tables A4 and A5 in the appendix.

5 Comparison between avoidance measures

Our results provide evidence regarding two channels through which households reduce

exposure to very high levels of PM2.5: by increasing time spent at home, and through

temporary travel away from home, presumably to higher air quality locations. Which of

these strategies is of greater consequence for reductions of PM2.5 exposure depends on the

extent of uptake and the extent to which the strategy results in reductions in exposure.

To compare reduced exposure due to intensive and extensive margin avoidance, we perform

a back-of-the-envelope calculation in which we calculate changes in the number of hours

individuals were exposed to PM2.5 greater than 35 µg/m3 as a result of each strategy. For
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time spent at home, we calculate the reduction in exposure hours (∆H1) as:

∆H1 =
∑
t

∑
j

1(weekday) · ϕ · PMjt ≥ 35 ·Nj ·
9βD,Weekday

100
(3)

where Nj is the count of households in our sample in place j and ϕ is a parameter

representing the share of time spent away from home individuals are assumed to spend

outdoors. βD,Weekday represents estimated average change in the percent of time spent at

home during daytime hours (D) on weekdays. Though indoor PM levels can vary widely,

we assume for the purpose of this exercise that on when days PM2.5 is above 35 µg/m3

outdoors, it is below this threshold in indoor locations. We find that users in our sample

avoid 7484 hours of exposure to high PM2.5 per year by increasing time spent at home.

For temporarily vacating smoke-impacted areas, we calculate the reduction in exposure

hours (∆H2) as:

∆H2 =
∑
t

∑
j

1
(
PMjt ≥ 35

)
· β · µ ·Njt · ϕ ·

(
9(1− Ȳ D,d(t)) + 3(1− Ȳ E,d(t)) + 12

)
(4)

Here, β represents the change in the probability a household will choose to leave home

due to high PM2.5 levels, µ represents the median number of days away from home for

households who leave, Njt represents the number of households in the sample at place j, and

ϕ again represents the share of time individuals are assumed to spend outdoors. The final

term in equation 4 provides the average number of hours that a household spends outside the

home on a given day, which we assume is also representative of days on which the household

has left the area. We find that users in our sample avoid 5828.325 hours11 by vacating

residences.

11The hours vary by year. 1591.46 hours in 2017, 4151.70 hours in 2018 and 85.16 hours in 2019. The
calculation assumes the number of users is constant across our sample years.
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6 Conclusion

We find that individuals engage in avoidance behavior by increasing time spent at home

and by traveling away from home to avoid wildfire smoke pollution. The increase in time

spent at home is particularly evident during weekday daytime hours, when users may have

greater margin to adjust their time spent at home. Moreover, our IV estimates indicate a

particularly strong avoidance response toward smoke, as compared to high PM2.5 more gen-

erally. Those estimates indicate that high PM2.5 (≥ 35µg/m3) caused by smoke increases the

share of time spent at home by Ecobee users during weekday daytime hours by 8 percentage

points on average—a 14 percent increase above users’ baseline average.

Users are also more likely to spend a day or more away from home during periods of

heavy air pollution due to smoke. We find that whereas on any given low pollution day the

likelihood typical household leaves home for more than a day is 0.56 percentage points, this

probability increases by 3 basis points on average on high pollution days, and by 8-17 basis

points on high pollution days caused by smoke.

While these behaviors are undertaken voluntarily in order to minimize health and other

consequences from smoke, they are nevertheless costly, and some populations may be better

able to bear these costs than others. We find that smoke causes users with predicted home

value (based on square footage) above the county median to more strongly increase the

amount of time at home during day time hours, and to more substantially increase the

likelihood of leaving home for more than one day, than for users living in homes with below

median home value. Heterogeneity results for family income, white population, and college

education are more equivocal, but these are based on Census place-level demographics, rather

than household-level data.

A key limitation of our study is that the data are drawn from users with smart ther-

mostats, who are likely to be wealthier than California’s broader population and thus not

fully representative.12 Previous studies have used cellphone tracking data, which, due to

the greater penetration of smartphone use in the overall population, is more broadly repre-

sentative. However, while available cellphone data provides some information at the level

of individual user, it is generally not possible to track users over time, nor do these data

provide information about how time spent at home changes over the course of the day. In

contrast, smart thermostat data allows us to track individual households’ behavior at a fine

temporal scale, enabling use of household-level fixed effects and allowing us to analyze the

times of day and times of week when smoke changes behavior the most. We therefore view

12These data also limit the interpretation of our heterogeneity analyses, which must be viewed as studies
of heterogeneous responses among the population of Ecobee users, rather than of heterogeneous responses
within the population overall.
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our study as a complement to these previous studies.

While this and related studies have consistently demonstrated that, in the face of sig-

nificant degradations in air quality due to smoke, populations engage in costly avoidance

behavior to a significant degree, there is currently little work available quantifying these

costs. This is an important area for future research, which could enable inclusion of avoid-

ance costs in estimates of overall damage costs associated with smoke. A second important

area for future research is more detailed examination of behavior of smoke exposure and the

capacity for avoidance behavior within disadvantaged groups. While our study and previous

studies have typically pursued heterogeneity analyses using aggregate data (our estimated

home value analysis is an exception), these data may mask heterogeneity at the individual

or household levels. Therefore, there is a need for researchers to identify new data sources

that would enable understanding responses to smoke within disadvantaged groups at the

individual level.
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A Appendix

A.1 Descriptive Statistics

Table A1: Percentage Time at Home and Probability of Vacating Residence

Days Time at home (Morning) Time at home (Evening) Prob(vacate)

1 Monday-Thursday 54.76 70.62 0.006
2 Friday 56.78 66.59 0.008
3 Saturday 65.26 63.35 0.010
4 Sunday 65.82 69.61 0.007

Notes: time at home was calculated for each user-day group pair and then averaged across users.
Trip days including the day prior to leaving was not included in the calculation. Probability
of vacating residence was based on first day of leaving home divided by the total number of
non-trip days.

Figure A1: Daily Patterns of Minutes at Home per Hour
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Figure A2: Distribution of Weighted Distance Between Monitors and User Cities

Number of Users in Each County Number of Users Per Square Mile

Figure A3: Comparison of User Metrics Across Counties
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Figure A4: Distribution of Places by Demographics
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Figure A5:

Note: The statistics in this figure has been calculated using days the users did
not vacate their residences. PM ≥ 12 corresponds to days PM2.5 was at least
12 µg/m3 but less than 35 µg/m3. PM ≥ 35 corresponds to days PM2.5 was at
least as high as 35 µg/m3. The figure in the bottom panel is filtered to include
only weekdays.
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A.2 Additional Tables

Table A2: Robustness Check Excluding Nearby Fire - Time Spent at Home

Dependent variable:

Day Time (8 a.m. - 5 p.m.) Evening Time (5 p.m. - 8 p.m.)

OLS IV 1st Stage IV 2nd Stage OLS IV 1st Stage IV 2nd Stage

(1) (2) (3) (4) (5) (6)

PM ≥ 35 1.475∗∗∗ 7.731∗∗∗ 0.720∗∗ −1.435
(0.276) (2.157) (0.321) (2.111)

Smoke Day 0.061∗∗∗ 0.061∗∗∗

(0.005) (0.005)
Precipitation 0.090∗∗∗ −0.001∗∗∗ 0.097∗∗∗ 0.039∗∗∗ −0.001∗∗∗ 0.036∗∗∗

(0.009) (0.0001) (0.010) (0.011) (0.0001) (0.011)
(Precipitation)2 −0.001∗∗∗ 0.00002∗∗∗ −0.001∗∗∗ −0.0001 0.00002∗∗∗ −0.00002

(0.0002) (0.00000) (0.0002) (0.0002) (0.00000) (0.0002)
Temperature 0.079 −0.007∗∗∗ 0.118 0.097 −0.007 0.083

(0.078) (0.001) (0.078) (0.061) (0.001) (0.064)
(Temperature)2 −0.002 0.0001∗∗∗ −0.003 −0.002 0.0001∗∗∗ −0.002

(0.002) (0.00003) (0.002) (0.002) (0.00003) (0.002)
Holiday 6.615 −0.004 6.645∗∗∗ −4.554∗∗∗ −0.003 −4.562∗∗∗

(0.231) (0.003) (0.230) (0.183) (0.003) (0.184)

Mean 56.54 0.01 56.54 71.46 0.01 71.46
User by day-of-week FE Yes Yes Yes Yes Yes Yes
Week-of-sample FE Yes Yes Yes Yes Yes Yes
Observations 1,308,055 1,308,055 1,308,055 1,297,699 1,297,699 1,297,699
R2 0.432 0.237 0.432 0.325 0.236 0.325

Notes: the sample has been modified to exclude user-days with a fire that is within 5 miles. This table contains
results from estimation of Equation (1) for time spent at home on weekdays. Vacation days (as defined by the
authors previously), including one day prior to vacating residence, have been excluded. The dependent variable
is the percentage of time a user was home each day during the defined time windows. Number of half hour blocks
the user was home divided by the observed number of half hour blocks times 100 gives the percentage of time a
user was home. Standard errors are clustered at the census place level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A3: Robustness Check Excluding Nearby Fire - Traveling Away from Home

Dependent variable:
Vacated Residence

OLS IV 1st stage IV 2nd stage

(1) (2) (3) (4) (5)∑t−1
τ=t−7 1(PMjτ ≥ 35) 0.027∗ 0.179∗∗∗ 0.096∗∗∗

(0.015) (0.048) (0.034)∑t−1
τ=t−7 1(SmokeDay) 0.167∗∗∗

(0.010)
I(Smoke = 1 day) −0.011∗

(0.006)
I(Smoke = 2 days) −0.080∗∗∗

(0.011)
I(Smoke = 3 days) 0.117∗∗∗

(0.030)
I(Smoke = 4 days) 0.308∗∗∗

(0.039)
I(Smoke = 5 days) 0.637∗∗∗

(0.048)
I(Smoke = 6 days) 1.411∗∗∗

(0.098)
I(Smoke = 7 days) 1.684∗∗∗

(0.079)
Temperature 0.032∗∗∗ −0.041∗∗∗ −0.039∗∗∗ 0.036∗∗∗ 0.034∗∗∗

(0.011) (0.006) (0.005) (0.011) (0.011)
(Temperature)2 −0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.0003) (0.0001) (0.0001) (0.0003) (0.0003)
Precipitation 0.004∗ 0.002∗∗∗ 0.002∗∗∗ 0.004∗ 0.004∗

(0.002) (0.0004) (0.0004) (0.002) (0.002)
(Precipitation)2 −0.0001∗∗ −0.00003∗∗ −0.00002∗ −0.0001∗∗ −0.0001∗∗

(0.00004) (0.00001) (0.00001) (0.00004) (0.00004)
Holiday 0.392∗∗∗ −0.104∗∗∗ −0.101∗∗∗ 0.413∗∗∗ 0.404∗∗∗

(0.047) (0.007) (0.007) (0.048) (0.048)

Mean 0.56 0.1 0.1 0.56 0.56
Week-of-sample FE Yes Yes Yes Yes Yes
User by day-of-week FE Yes Yes Yes Yes Yes
Observations 1,851,388 1,790,216 1,790,216 1,790,216 1,790,216
R2 0.041 0.436 0.480 0.042 0.042

Notes: this table represents results from estimation of Equation (2). The dependent variable is
an indicator for first day of leaving home. It takes a value 1 on the first day of the user vacating
residence and 0 on all non-vacation days. The instrument for the number of days in the last 7
days when PM ≥ 35 µg/m³ in column (2) is the total number of smoke days in the last 7 days.
In column (3), the instrument variables are a sum of indicators, each turning on if the number of
smoke days in the last 7 days is equal to the indicator number. Standard errors are clustered at
the census place level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A4: Robustness Check Using Alternative Fixed Effects - Time Spent at Home

Dependent variable:

Day Time (8 a.m. - 5 p.m.) Evening Time (5 p.m. - 8 p.m.)

OLS IV 1st Stage IV 2nd Stage OLS IV 1st Stage IV 2nd Stage

(1) (2) (3) (4) (5) (6)

PM ≥ 35 2.436∗∗∗ 6.671∗∗∗ 0.284 −1.373
(0.282) (1.706) (0.309) (1.516)

Smoke Day 0.080∗∗∗ 0.081∗∗∗

(0.008) (0.009)
Precipitation 0.074∗∗∗ −0.002∗∗∗ 0.083∗∗∗ 0.014 −0.002∗∗∗ 0.010

(0.009) (0.0002) (0.009) (0.011) (0.0002) (0.010)
(Precipitation)2 −0.001∗∗∗ 0.00003∗∗∗ −0.001∗∗∗ 0.0001 0.00003∗∗∗ 0.0002

(0.0002) (0.00000) (0.0002) (0.0002) (0.00000) (0.0002)
Temperature −0.343∗∗∗ −0.004∗∗∗ −0.324∗∗∗ 0.243∗∗∗ −0.005∗∗∗ 0.235∗∗∗

(0.058) (0.001) (0.060) (0.048) (0.001) (0.049)
(Temperature)2 0.007∗∗∗ 0.0001∗∗ 0.007∗∗∗ −0.005∗∗∗ 0.0001∗∗∗ −0.005∗∗∗

(0.002) (0.00003) (0.002) (0.001) (0.00003) (0.001)
Holiday 8.750∗∗∗ 0.022∗∗∗ 8.653∗∗∗ −5.198∗∗∗ 0.022∗∗∗ −5.159∗∗∗

(0.267) (0.003) (0.273) (0.192) (0.003) (0.188)

Mean 56.5 0.01 56.5 71.43 0.01 71.43
User by day-of-week FE Yes Yes Yes Yes Yes Yes
Year-month FE Yes Yes Yes Yes Yes Yes
Observations 1,346,392 1,346,392 1,346,392 1,335,638 1,335,638 1,335,638
R2 0.429 0.119 0.429 0.323 0.121 0.323

Notes: this table contains results from estimation of Equation (1) for time spent at home on weekdays. Vacation
days (as defined by the authors previously), including one day prior to vacating residence, have been excluded.
The dependent variable is the percentage of time a user was home each day during the defined time windows.
Number of half hour blocks the user was home divided by the observed number of half hour blocks times 100 gives
the percentage of time a user was home. Standard errors are clustered at the census place level.
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Table A5: Robustness Check Using Alternative Fixed Effects - Traveling Away from Home

Dependent variable: Vacated Residence

OLS IV 1st stage IV 2nd stage

(1) (2) (3) (4) (5)∑t−1
τ=t−7 1(PMjτ ≥ 35) 0.068∗∗∗ 0.192∗∗∗ 0.123∗∗∗

(0.012) (0.035) (0.029)∑t−1
τ=t−7 1(SmokeDay) 0.163∗∗∗

(0.014)
I(Smoke = 1 day) 0.019∗∗∗

(0.007)
I(Smoke = 2 days) 0.014

(0.013)
I(Smoke = 3 days) 0.120∗∗∗

(0.032)
I(Smoke = 4 days) 0.291∗∗∗

(0.065)
I(Smoke = 5 days) 0.636∗∗∗

(0.055)
I(Smoke = 6 days) 1.420∗∗∗

(0.098)
I(Smoke = 7 days) 1.620∗∗∗

(0.084)
Temperature −0.017∗ −0.027∗∗∗ −0.025∗∗∗ −0.012 −0.014

(0.009) (0.004) (0.004) (0.010) (0.010)
(Temperature)2 0.0003 0.0004∗∗∗ 0.0004∗∗∗ 0.0002 0.0003

(0.0002) (0.0001) (0.0001) (0.0002) (0.0002)
Precipitation 0.006∗∗∗ 0.001∗ 0.0005 0.006∗∗∗ 0.006∗∗∗

(0.002) (0.001) (0.001) (0.002) (0.002)
(Precipitation)2 −0.0001∗∗ −0.00002∗ −0.00001 −0.0001∗∗ −0.0001∗∗

(0.00004) (0.00001) (0.00001) (0.00004) (0.00004)
Holiday 0.523∗∗∗ 0.061∗∗∗ 0.063∗∗∗ 0.512∗∗∗ 0.519∗∗∗

(0.047) (0.007) (0.008) (0.048) (0.048)

Mean 0.56 0.1 0.1 0.57 0.57
Year-month FE Yes Yes Yes Yes Yes
User by day-of-week FE Yes Yes Yes Yes Yes
Observations 1,905,765 1,885,720 1,885,720 1,885,720 1,885,720
R2 0.040 0.259 0.303 0.040 0.040
F-stat - 32.64 40.6 - -

Notes: this table represents results from estimation of Equation (2). The dependent variable is
an indicator for first day of leaving home. It takes a value 1 on the first day of the user vacating
residence and 0 on all non-vacation days. The instrument for the number of days in the last 7
days when PM ¿= 35 µg/m³ in column (2) is the total number of smoke days in the last 7 days.
In column (3), the instrument variables are a sum of indicators, each turning on if the number
of smoke days in the last 7 days is equal to the indicator number. Standard errors are clustered
at the census place level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A6: Robustness Check Using Alternative PM threshold - Time Spent at Home

Dependent variable: Percentage Time at Home

Day Time (8 a.m. - 5 p.m.) Evening Time (5 p.m. - 8 p.m.)

OLS IV 1st Stage IV 2nd Stage OLS IV 1st Stage IV 2nd Stage

PM ≥ 12 0.079 4.176∗∗∗ 0.099 -0.438
(0.083) (1.392) (0.086) (1.144)

Smoke Day 0.116∗∗∗ 0.119∗∗∗

(0.011) (0.012)
Precipitation 0.091∗∗∗ -0.014∗∗∗ 0.147∗∗∗ 0.040∗∗∗ -0.013∗∗∗ 0.033∗

(0.009) (0.001) (0.023) (0.011) (0.001) (0.018)
(Precipitation)2 -0.001∗∗∗ 0.0002∗∗∗ -0.002∗∗∗ -0.0001 0.0002∗∗∗ 0.00002

(0.0002) (0.00002) (0.0004) (0.0002) (0.00002) (0.0003)
Temperature 0.063 -0.036∗∗∗ 0.206∗∗ 0.089 -0.034∗∗∗ 0.071

(0.076) (0.004) (0.092) (0.058) (0.004) (0.076)
(Temperature)2 -0.002 0.001∗∗∗ -0.006∗∗ -0.002 0.001∗∗∗ -0.001

(0.002) (0.0001) (0.003) (0.002) (0.0001) (0.002)
Holiday 6.697∗∗∗ -0.001 6.705∗∗∗ -4.527∗∗∗ -0.0005 -4.528∗∗∗

(0.236) (0.008) (0.232) (0.191) (0.008) (0.192)

Mean 56.5 0.28 56.5 71.43 0.28 71.43
User by Day of Week FE Yes Yes Yes Yes Yes Yes
Week-of-sample FE Yes Yes Yes Yes Yes Yes
Observations 1,346,392 1,346,392 1,346,392 1,335,638 1,335,638 1,335,638
R2 0.432 0.347 0.430 0.325 0.346 0.325
F-stat - 49.09 - - 48.61 -

Notes: This table contains results from estimation of Equation (1) for time spent at home on weekdays. Vacation
days (as defined by the authors previously), including one day prior to vacating residence, have been excluded.
The dependent variable is the percentage of time a user was home each day during the defined time windows.
Number of half hour blocks the user was home divided by the observed number of half hour blocks times 100
gives the percentage of time a user was home. Standard errors are clustered at the census place level. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01
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Table A7: Robustness Check Using PM ≥ 12 Indicator - Travelling Away from
Home

Dependent variable: Vacated Residence

OLS IV 1st stage IV 2nd stage

(1) (2) (3) (4) (5)∑t−1
τ=t−7 1(PMjτ ≥ 12) −0.003 0.106∗∗∗ 0.058∗∗

(0.004) (0.030) (0.023)∑t−1
τ=t−7 1(SmokeDay) 0.253∗∗∗

(0.014)
I(Smoke = 1 day) 0.031

(0.029)
I(Smoke = 2 days) 0.048

(0.060)
I(Smoke = 3 days) 0.106

(0.080)
I(Smoke = 4 days) 0.724∗∗∗

(0.116)
I(Smoke = 5 days) 1.233∗∗∗

(0.082)
I(Smoke = 6 days) 1.696∗∗∗

(0.087)
I(Smoke = 7 days) 2.574∗∗∗

(0.142)
Temperature 0.030∗∗∗ −0.262∗∗∗ −0.260∗∗∗ 0.057∗∗∗ 0.045∗∗∗

(0.010) (0.020) (0.020) (0.011) (0.010)
(Temperature)2 −0.001∗∗∗ 0.006∗∗∗ 0.006∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.0002) (0.001) (0.001) (0.0003) (0.0003)
Precipitation 0.004∗ 0.020∗∗∗ 0.020∗∗∗ 0.002 0.003

(0.002) (0.002) (0.002) (0.002) (0.002)
(Precipitation)2 −0.0001∗∗ −0.0003∗∗∗ −0.0003∗∗∗ −0.0001 −0.0001∗

(0.00004) (0.00004) (0.00004) (0.00004) (0.00004)
Holiday 0.386∗∗∗ −0.150∗∗∗ −0.146∗∗∗ 0.404∗∗∗ 0.396∗∗∗

(0.046) (0.022) (0.023) (0.046) (0.046)

Mean 0.56 1.92 1.92 0.57 0.57
Week-of-sample FE Yes Yes Yes Yes Yes
User by Day of week FE Yes Yes Yes Yes Yes
Observations 1,905,765 1,885,720 1,885,720 1,885,720 1,885,720
R2 0.041 0.584 0.590 0.041 0.041
F-stat 130.31 133.04

Notes: This table represents results from estimation of Equation (2). The dependent variable
is an indicator for first day of leaving home. It takes a value 1 on the first day of the user
vacating residence and 0 on all non-vacation days. The instrument for the number of days in
the last 7 days when PM ≥ 12 µg/m³ in column (2) is the total number of smoke days in the
last 7 days. In column (3), the instrument variables are a sum of indicators, each turning on
if the number of smoke days in the last 7 days is equal to the indicator number. Standard
errors are clustered at the census place level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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A.3 Additional Figures

Figure A6: Changes in Time Spent at Home by Time of Day
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Figure A7: Time Spent at Home - Distributed Lag Model
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